Haar ondulieren - définition. Qu'est-ce que Haar ondulieren
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est Haar ondulieren - définition

THE FIRST WAVELET
Haar function; Haar transform; Haar basis; Rademacher function; Haar basis functions; Haar Wavelet

Haar measure         
LEFT-INVARIANT (OR RIGHT-INVARIANT) MEASURE ON LOCALLY COMPACT TOPOLOGICAL GROUP
Haar Integral; Haar integral; Unimodular group; Harr measure; Haar modulus; Haar theorem; Haar's theorem; Haar Measure
In mathematical analysis, the Haar measure assigns an "invariant volume" to subsets of locally compact topological groups, consequently defining an integral for functions on those groups.
Alfréd Haar         
  • 3=Szász Pál (matematikus)}}
HUNGARIAN MATHEMATICIAN
Alfred Haar
Alfréd Haar (; 11 October 1885, Budapest – 16 March 1933, Szeged) was a Hungarian mathematician. In 1904 he began to study at the University of Göttingen. His doctorate was supervised by David Hilbert. The Haar measure, Haar wavelet, and Haar transform are named in his honor. Between 1912 and 1919 he taught at Franz Joseph University in Kolozsvár. Together with Frigyes Riesz, he made the University of Szeged a centre of mathematics. He also founded the Acta Scientiarum Mathematicarum journal together with Riesz.
Frank–Ter Haar syndrome         
HUMAN DISEASE
FRANK-TER HAAR SYNDROME; Frank-ter Haar syndrome; Frank–ter Haar syndrome; Frank-Ter Haar syndrome
Frank–Ter Haar syndrome (FTHS), also known as Ter Haar-syndrome, is a rare disease characterized by abnormalities that affect bone, heart, and eye development. Children born with the disease usually die very young.

Wikipédia

Haar wavelet

In mathematics, the Haar wavelet is a sequence of rescaled "square-shaped" functions which together form a wavelet family or basis. Wavelet analysis is similar to Fourier analysis in that it allows a target function over an interval to be represented in terms of an orthonormal basis. The Haar sequence is now recognised as the first known wavelet basis and is extensively used as a teaching example.

The Haar sequence was proposed in 1909 by Alfréd Haar. Haar used these functions to give an example of an orthonormal system for the space of square-integrable functions on the unit interval [0, 1]. The study of wavelets, and even the term "wavelet", did not come until much later. As a special case of the Daubechies wavelet, the Haar wavelet is also known as Db1.

The Haar wavelet is also the simplest possible wavelet. The technical disadvantage of the Haar wavelet is that it is not continuous, and therefore not differentiable. This property can, however, be an advantage for the analysis of signals with sudden transitions (discrete signals), such as monitoring of tool failure in machines.

The Haar wavelet's mother wavelet function ψ ( t ) {\displaystyle \psi (t)} can be described as

ψ ( t ) = { 1 0 t < 1 2 , 1 1 2 t < 1 , 0 otherwise. {\displaystyle \psi (t)={\begin{cases}1\quad &0\leq t<{\frac {1}{2}},\\-1&{\frac {1}{2}}\leq t<1,\\0&{\mbox{otherwise.}}\end{cases}}}

Its scaling function φ ( t ) {\displaystyle \varphi (t)} can be described as

φ ( t ) = { 1 0 t < 1 , 0 otherwise. {\displaystyle \varphi (t)={\begin{cases}1\quad &0\leq t<1,\\0&{\mbox{otherwise.}}\end{cases}}}